

۲

# **QDD EDFA Datasheet**

#### Features

- QSFP-DD Compact Form
- Hot Pluggable
- Duplex LC Connector
- Output Power Monitoring
- I2C Communication Interface

#### **Version History**

| version mise | JI y    |             |
|--------------|---------|-------------|
| Date         | Version | Description |
| 2024/12/31   | 1.0     | Initialize  |
|              |         |             |

#### **Order Information**

| Taclink Part Number       | Description | Code |
|---------------------------|-------------|------|
| WZEDFA-EM-BQD01606-LC/UPC |             | -    |

## **Functional Diagram**

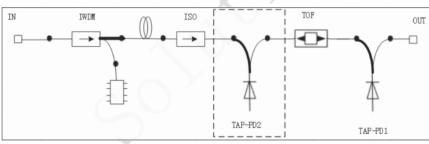
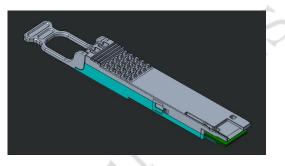



Figure1 Functional Diagram

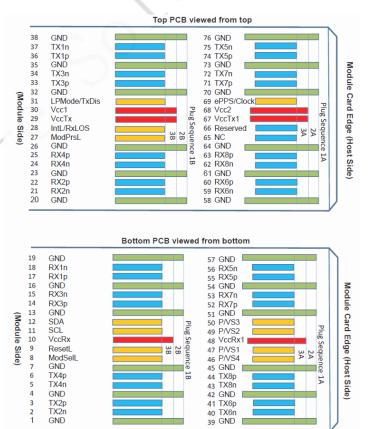
### **Operation/Storage Temperature and Humidity**

| Parameter                  | Specification | Unit | Note |
|----------------------------|---------------|------|------|
| Operating case temperature | -5 ~ 75       | °C   |      |
| Operation Humidity         | 5~90          | %RH  |      |
| Storage Temperature        | -25 ~ +85     | °C   |      |
| Storage Humidity           | 5~95          | %RH  |      |

## **Optical Characteristics**


| Parameter                     | Min  | Тур | Max  | Units | Comments                                  |
|-------------------------------|------|-----|------|-------|-------------------------------------------|
| Wavelength range              | 1528 |     | 1565 | nm    | lch.                                      |
| Signal input power            | -13  |     | -10  | dBm   |                                           |
| Signal input power monitoring | -16  |     | -6   | dBm   |                                           |
| range                         |      |     |      |       |                                           |
| Output power                  | 6    |     |      | dBm   |                                           |
| Noise figure                  |      | 6   | 7    | dB    | Test Condition : Pin = -13dBm, Pout=6dBm. |
| Output power monitor accuracy | -0.5 |     | 0.5  | dB    |                                           |




| Polarization-mode dispersion     |     |     | 0.5 | ps  |  |
|----------------------------------|-----|-----|-----|-----|--|
| Polarization dependent gain      |     |     | 0.5 | dB  |  |
| Return loss                      | 30  |     |     | dB  |  |
| TOF Characteristics              |     |     | -   |     |  |
| 3 dB Bandwidth                   | 160 | 180 | 220 | GHz |  |
| 20 dB Bandwidth                  | 350 | 480 | 560 | GHz |  |
| Side-mode Suppression Ratio      |     | 30  |     | dB  |  |
| Temperature dependence frequency | -55 |     | 55  | GHz |  |
| shift                            |     |     |     |     |  |

### **Mechanical Dimension Part**

Compliant with QSFP-DD MSA. Layout



# **Hardware Interface**



Classic

14

Additional





| Pad | Pin Name   | Logic  | Function                       | Plug Seq. | Notes |
|-----|------------|--------|--------------------------------|-----------|-------|
| 1   | GND        |        | Ground                         | 1B        | 1     |
| 2   | Tx2n       | CML    | Reserve                        | 3B        | 6     |
| 3   | Tx2p       | CML    | Reserve                        | 3B        | 6     |
| 4   | GND        |        | Ground                         | 1B        | 1     |
| 5   | Tx4n (TXD) | LVTTL  | Serial Port Output             | 3B        | 6     |
| 6   | Tx4p (RXD) | LVTTL  | Serial Port Input              | 3B        | 6     |
| 7   | GND        |        | Ground                         | 1B        | 1     |
| 8   | ModSelL    | LVTTL  | Module Select                  | 3B        | 7     |
| 9   | ResetL     | LVTTL  | Module Reset                   | 3B        | 8     |
| 10  | VccRx      |        | +3.3V Power Supply Receiver    | 2B        | 2     |
| 11  | SCL        | LVCMOS | TWI serial interface clock     | 3B        |       |
| 12  | SDA        | LVCMOS | TWI serial interface data      | 3B        |       |
| 13  | GND        |        | Ground                         | 1B        | 1     |
| 14  | Rx3n       | CML    | Reserve                        | 3B        | 6     |
| 15  | Rx3n       | CML    | Reserve                        | 3B        | 6     |
| 16  | GND        |        | Ground                         | 1B        | 1     |
| 17  | Rx1n       | CML    | Reserve                        | 3B        | 6     |
| 18  | Rx1n       | CML    | Reserve                        | 3B        | 6     |
| 19  | GND        |        | Ground                         | 1B        | 1     |
| 20  | GND        |        | Ground                         | 1B        | 1     |
| 20  | Rx2n       | CML    | Reserve                        | 3B        | 6     |
| 22  | Rx2n       | CML    | Reserve                        | 3B        | 6     |
| 23  | GND        |        | Ground                         | 1B        | 1     |
| 24  | Rx4n       | CML    | Reserve                        | 3B        | 6     |
| 25  | Rx4n       | CML    | Reserve                        | 3B        | 6     |
| 26  | GND        | 5      | Ground                         | 1B        | 1     |
| 27  | ModPrsL    | LVTTL  | Module Present                 | 3B        | 10    |
| 28  | IntL       | LVTTL  | Interrupt                      | 3B        | 11    |
| 29  | VccTx      |        | +3.3V Power supply transmitter | 2B        | 2     |
| 30  | Vcc1       |        | +3.3V Power supply             | 2B        | 2     |
| 31  | TxDis      | LVTTL  | Optional TX Disable            | 3B        | 9     |
| 32  | GND        |        | Ground                         | 1B        | 1     |
| 33  | Tx3n       | CML    | Reserve                        | 3B        | 6     |
| 34  | Tx3p       | CML    | Reserve                        | 3B        | 6     |
| 35  | GND        |        | Ground                         | 1B        | 1     |
| 36  | Tx1n       | CML    | Reserve                        | 3B        |       |
| 37  | Tx1p       | CML    | Reserve                        | 3B        |       |
| 38  | GND        |        | Ground                         | 1B        | 1     |
| 39  | GND        |        | Ground                         | 1A        | 1     |
| 40  | Tx6n       | CML    | Reserve                        | 3A        | 6     |
| 41  | Тх6р       | CML    | Reserve                        | 3A        | 6     |
| 42  | GND        |        | Ground                         | 1A        | 1     |
| 43  | Tx8n       | CML    | Reserve                        | 3A        | 6     |
| 44  | Tx8p       | CML    | Reserve                        | 3A        | 6     |
| 45  | GND        |        | Ground                         | 1A        | 1     |



| 46 | P/VS4      | LVCMOS/CML | Programmable/Module Vendor Specific 4 | 3A   | 5 |
|----|------------|------------|---------------------------------------|------|---|
| 47 | P/VS1      | LVCMOS/CML | Programmable/Module Vendor Specific 1 | 3A   | 5 |
| 48 | VccRx1     |            | 3.3V Power Supply                     | 2A   | 2 |
| 49 | P/VS2      | LVCMOS/CML | Programmable/Module Vendor Specific 2 | 3A   | 5 |
| 50 | P/VS3      | LVCMOS/CML | Programmable/Module Vendor Specific 3 | 3A   | 5 |
| 51 | GND        |            | Ground                                | 1A   | 1 |
| 52 | Rx7n       | CML        | Reserve                               | 3A   | 6 |
| 53 | Rx7n       | CML        | Reserve                               | 3A   | 6 |
| 54 | GND        |            | Ground                                | 1A 🔿 | 1 |
| 55 | Rx5n       | CML        | Reserve                               | 3A   | 6 |
| 56 | Rx5n       | CML        | Reserve                               | 3A   | 6 |
| 57 | GND        |            | Ground                                | 1A   | 1 |
| 58 | GND        |            | Ground                                | 1A   | 1 |
| 59 | Rx6n       | CML        | Reserve                               | 3Å   | 6 |
| 60 | Rx6n       | CML        | Reserve                               | 3A   | 6 |
| 61 | GND        |            | Ground                                | 1A   | 1 |
| 62 | Rx8n       | CML        | Reserve                               | 3A   | 6 |
| 63 | Rx8n       | CML        | Reserve                               | 3A   | 6 |
| 64 | GND        |            | Ground                                | 1A   | 1 |
| 65 | NC         |            | No Connect                            | 3A   | 3 |
| 66 | Reserve    |            | For future use                        | 3A   | 3 |
| 67 | VccTx1     |            | 3.3V Power Supply                     | 2A   | 3 |
| 68 | Vcc2       |            | 3.3V Power Supply                     | 2A   | 3 |
| 69 | ePPS/Clock | LVCOM      | Reserve                               | 3A   | 6 |
| 70 | GND        | . (        | Ground                                | 1A   | 1 |
| 71 | Tx7n       |            | Reserve                               | 3A   | 6 |
| 72 | Tx7p       | 5          | Reserve                               | 3A   | 6 |
| 73 | GND        |            | Ground                                | 1A   | 1 |
| 74 | Tx5n       | 0          | Reserve                               | 3A   | 6 |
| 75 | Tx5p       |            | Reserve                               | 3A   | 6 |
| 76 | GND        |            | Ground                                | 1A   | 1 |

**Note1:** QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane. Each connector Gnd contact is rated for a steady state current of 500 mA.

**Note2:** VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be connected together. Supply requirements defined for the host side of the Host Card Edge Connector are listed in Table3.1. For power classes 4 and above the module differential loading of input voltage pads must not result in exceeding contact current limits. Each connector Vcc contact is rated for a steady state current of 2000 mA.

**Note3:** Reserved pad recommended to be terminated with  $10k\Omega$ to ground on the host. Pad 65 (No Connect) Shall be left unconnected within the module, optionally pad 65 may get terminated with  $10k\Omega$  to ground on the host.

**Note4:** Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (See Figure6.1 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A and 1B will then occur simultaneously, followed by 2A and 2B, followed by 3A and 3B.

**Note5:** Full definitions of the P/VSx signals currently under development. For module designs using programmable/vendor specific inputs P/VS1 and P/VS4 signals it is recommended each to be terminated in the module with  $10k\Omega$ . For host designs using programmable/vendor specific outputs P/VS2 and P/VS3 signals it is recommended each to be terminated on the host with 10k.



Note6: These pins of the module are not used and are internally suspended for processing.

**Note7:** The ModSelL is an input signal that shall be pulled to Vcc in the module. When held low by the host, the module responds to TWI serial communication commands. The ModSelL allows the use of multiple modules on a single TWI interface bus. When ModSelL is "High", the module shall not respond to or acknowledge any TWI interface communication from the host.

**Note8:** The ResetL signal shall be pulled to Vcc in the module. A low level on the ResetL signal for longer than the minimum pulse length (t Reset init) initiates a complete module reset, returning all user module settings to their default state.

Note9: TxDis signal requires to pull up 10k to Vcc inside the t module, indicating that the pump is turned off.

**Note10:** ModPrsL shall be pulled up to Vcc on the host board and pulled down to the GND in the module. The ModPrsL is asserted "Low" when the module is inserted. The ModPrsL is deasserted "High" when the module is physically absent from the host connector due to the pull-up resistor on the host board.

**Note11:** IntL is a open-collector output signal from the module. It shall be pulled-up 10k to Vcc on the host board. When the IntL signal is asserted Low it indicates a change in module state, a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the TWI serial interface. The IntL signal is deasserted "High" after all set interrupt flags are read.

Page5